Big Data, Open Data and Official Statistics

There are (at least) two big challenges official statistics will be faced with in the  next few years and which will possibly change its quasi-monoplistic position.

.

On the input side it’s Big Data

‘“Big Data” is a term used to describe massive information stores – generally measured in petabytes and exabytes – and also refers to the methods and technologies used to analyze these large data volumes.  The core principles of Big Data (data mining, analytics) have been around for some time, but recent technology has enabled the collection and analysis of previously unimaginable data volumes at extremely high speeds.’ So says for example SAP and gives some examples how  Big Data will change your life (big words and they show how big software and hardware players begin to occupy the field).

Official Statistics has already put this on the agenda! And so has the in United Nations Statistics Division’s (UNSD) Friday Seminar on Emerging Issues, 22 February 2013.

Some papers from this Seminar:

Gosse van der Veen Statistics Netherlands. High Level Group for the Modernization of Statistical Products and Services. Big Data: Big Opportunity!

2013-04-15_vanderveen-statcom2013

The High-Level Group for the Modernisation of Statistical Production and Services (HLG) established an informal Task Team of national and international experts, coordinated by the UNECE Secretariat. The Paper of this group gives an excellent overview of the topic: What Does “Big Data” mean for Official Statistics.

2013-04-15_HLG-BIGData-Paper

.

Andrew Wyckoff, Big Data for Policy,Development and Official Statistics, Directorate for Science, Technology & Industry. Organisation for Economic Co-operation and Development OECD (personal opinion).

2013-04-15_BigDataRoles-WykoffOECD

.

Aspects of Big Data and real-time analytics are provided in another paper by Global Pulse (an innovation initiative launched by the Executive Office of the United Nations Secretary-General): Big Data for Development: Opportunities & Challenges

2013-04-15_globalpulse

.

The discussion is launched and as mentions the HLG  paper: ‘To use Big data, statisticians are needed with a different mind-set and new skills. The processing of more and more data for official statistics requires statistically aware people with an analytical mind-set, an affinity for IT (e.g. programming skills) and a determination to extract valuable ‘knowledge’ from data. These so-called “data scientists” can be derived from various scientific disciplines.’

.

On the output side it’s (Linked) Open Data in combination with APIs

Open Data is not at all a new topic for Official Statistics. National Statistical Institutes were forerunners in openly providing data; organizations like UN or EUROSTAT went this way as well.

Several Open Data initiatives (USA, UK, France, EU …) consist mostly of data catalogues, and are in that sense also public relations initiatives. A large part of the data so provided consists of statistical data already available, often, on the website of the National Statistical Institute concerned. The EU portal, for instance, offers 5716 datasets  of statistical data from a total of 5893 (as of April 2013).

Further central questions are the licensing of data, 2013-04-20_CCBYas well as their availability in machine-readable formats.

Machine-readable statistical data, Application Programming Interfaces (APIs) to the data and especially Linked Open Data LOD (–> essentials, –>tutorial) open the way to creative applications and new models of presenting information.

2015-01-25_berners lee

An Europe-wide Linked Open Data (LOD2) project ‘was launched in September 2010 and will run for four years. It addresses exploitation of the web as a platform for data and information integration, and the use of semantic technologies to make government data more useable.’

Looking for third-party APPs

Data Providers are looking at applications or mashups made with their data  with much interest, and they are even sponsoring competitions and hack days (like Apps4EU) to stimulate the reuse of open data, especially from the public sector.

The most popular APP creator and statistical storyteller is Hans Roslings  with Gapminder. Rosling himself is a pioneer in fighting for open data.

http://www.youtube.com/watch?feature=player_embedded&v=jbkSRLYSojo

Changing paradigms

Open Data, Linked Open Data and APIs are changing the dissemination paradigm of statistical agencies. More people with new skills will do new things. Coding is becoming the new literacy, says i.e. Garrett Heath in his advice for his unborn daughter: ‘I was blown away that the buzz is not around mobile apps, but rather around using APIs. Ten years ago saw the creation of the social networking platforms. The past five years has been about accumulating the data. The next five years and beyond will be about interpreting that data. [My daughter will have access to] a boatload of interesting data sitting in accessible databases that is waiting to be exposed and interpreted with her [the programmer’s]) creativity.’

Storytelling with data

Storytelling based on data is less and less the domain of statistical agencies. Storytelling can access multiple (new) resources and take on new forms.  To satisfy the basic idea of an easily understandable and appealing presentation of statistical content, statistical institutions cannot avoid taking certain measures to improve their content and presentation. The “composer” must know how the music is to be played, that is as a quick, competent, qualitatively unique, reliable and indispensable data source.
But this presentation job can no longer be done on one’s own: cooperative partnerships are necessary and have already begun to some extent, both with partners outside statistical institutions and between such institutions. This discussion has been launched.

Statistical Storytelling revisited! More in a paper from IMAODBC Vilnius 2010:

2013-04-20_storytellingrevisited2010.

And this: Many small open data give big data insights

FORGET BIG DATA, SMALL DATA IS THE REAL REVOLUTION says Rufus Pollock co-Director of the Open Knowledge Foundation : ‘… the discussions around big data miss a much bigger and more important picture: the real opportunity is not big data, but small data. Not centralized “big iron”, but decentralized data wrangling. Not “one ring to rule them all” but “small pieces loosely joined”.’

small-data-640x120

IMAODBC 2012: And the winner is …

The Bo Sundgren Award of the International Marketing and Output Database Conference IMAODBC 2012 in Pruhonice near Prag goes to Alain Nadeau from the  Swiss Federal Statistical Office FSO.

In his contribution Alain showed how the renovation of the FSO website can go together with a more open data-oriented publishing. This by separating the three layers of the application.

One of the databases in the data layer is planned to be in the linked open data format, the 5star format described by Tim Berners-Lee. A prototype is under way and first experiences will show up beginning 2013.

.

Semantic Web, RDF and APIs

This is one, ambitious RDF-based way providing open data. It’s not the only one because data can also be offered i.e. via specific APIs. Such an API has been developped at FSO. It uses data from PX-Cubes and displays HTML-tables  (for the moment only internal access to the API).

.

The presentation

See the full presentation here.

LOGSD

Curious about abbreviations? Here’s (a new) one: Linked Open Government Statistical Data LOGSD.

LOGSD are statistical data official statistics agencies provide in a LOD format for reuse. And such reuse may combine (mash up) statistical LOD with other sources in the LOD Cloud.

For example: ONS

The Office of National Statistics ONS and others in UK are very active in this field. So for better accessing geographical metadata which are essential in presenting statistics:

‘The solution is to use data.gov.uk as a single access point for discovery of geographic data, and to link from there to a geoportal (that is currently in development) where users could download the geographic products online. This goes most of the way to delivering the tools that users need to work with statistical data but there is also an opportunity to go further and provide geographic data as linked data, using the GSS codes that uniquely identify each geography to link the attributes from the different geographic products. Now, instead of a 9 character GSS identifier, each geography is given a URI that allows it to not only be uniquely identified but also makes it available online. We therefore end up with identifiers such as http://statistics.data.gov.uk/id/statistical-geography/E05008305 that only require users to change the GSS code at the end to get to the geographic information that they need.’ http://data.gov.uk/blog/update-from-ons-on-data-interoperability-0

Explain-a-LOD

And here an example how LOD and statistical (not yet LOGSD) data could work together. It’s an experimental proof of concept using data from Mercer quality of living survey and Transparency International, enriching these data with more information from DBpedia and calculating correlations that lead to hypotheses about the data.

Heiko Paulheim from Technische Universität Darmstadt made this interesting experiment which illustrates how linking data works. Abstract of Paulheim’s study “Generating Possible Interpretations for Statistics from Linked Open Data’ :

Statistics are very present in our daily lives. Every day, new statistics are published, showing the perceived quality of living in different cities, the corruption index of different countries, and so on. Interpreting those statistics, on the other hand, is a difficult task. Often, statistics collect only very few attributes, and it is difficult to come up with hypotheses that explain, e.g., why the perceived quality of living in one city is higher than in another. In this paper, we introduce Explain-a-LOD, an approach which uses data from Linked Open Data for generating hypotheses that explain statistics. We show an implemented prototype and compare different approaches for generating hypotheses by analyzing the perceived quality of those hypotheses in a user study.’

LOD Essentials

www.semantic-web.at provides a quick start guide for all interested in Open Data, Open Government Data and especially in Linked Open Data (LOD) which is the five-star format in publishing data.

‘ This is a quick start guide for decision makers who need to quickly get up to speed with the Linked Open Data (LOD) concept, and who want to make their organization a part of this movement.

It gives a quick overview of all key aspects of LOD, and gives practical answers to many pertinent questions including:
• What do the terms Open Data, Open Government Data and Linked Open Data actually mean, and what are the dierences between them?
• What do I need to take into account in developing a LOD strategy for my organization?
• What does my organization need to do technically in order to open up and publish its data sets?
• How can I make sure the data is accessible and digestible for others?
• How can I add value to my own data sets by consuming LOD from other sources?
• What can be learned from three case studies of best practices in LOD?
• REEEP’s clean energy information portal reegle.info
• NREL’s Open Energy Information Portal
• The ocial home of UK legislation: legislation.gov.uk
• What are the potentials offered by this fundamental step-change in the way data is shared and consumed via the web?’